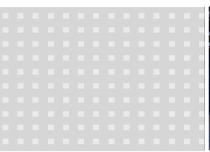
HEAT RECOVERY BIOMASS

PRIMARY FUELS

SOLID RESIDUES

LIQUID & GASEOUS RESIDUES

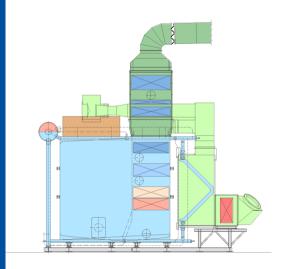



# CCP PLANT VAREL B8 VAREL, GERMANY





## **CCP PLANT VAREL B8, VAREL, GERMANY**










| Number of lines                             | 1                                         |
|---------------------------------------------|-------------------------------------------|
| Fuel                                        | Natural gas H                             |
| Heating value                               | 31.66 MJ/m³ i. N.                         |
| Fuel Throughput                             | 6,078 m³ i. N./h                          |
| Rated Thermal Input                         | 53 MW                                     |
| Combustion air                              | Gas turbine exhaust gas as oxygen carrier |
| Gas turbine- exhaust gas temperature        | 556 °C                                    |
| Gas turbine – exhaust gas volume flow (wet) | 41.76 kg/s                                |
| Steam capacity                              | 90 t/h                                    |
| Steam pressure                              | 90 bar                                    |
| Steam temperature                           | 480 °C                                    |
| Feedwater temperature                       | 105 °C                                    |
| Exhaust gas temperature                     | 135 °C                                    |
| Design code                                 | TRD – DIN/ EN                             |
| Year of commissioning                       | 2007                                      |



#### THE TASK

The increased production capacity owing to the installation of an additional paper machine also required a performance boost on the part of the power center. The demands on energy supply within a paper and cardboard company – high electric capacity paired with high steam consumption – had to be taken into consideration where an enlargement of the plant by means of a new steam generator was concerned. In addition, the requirements for high dynamic load following capabilities (load changes up to 1 MW/s) had to be met and the boiler's part load performance at 100 % turbine output was to be optimised. The concept of a combined heat and power plant was again to be realized by using the patented CHPP SYSTEM HUTTER which had been patented by the company Friedrich Hutter GmbH.

### THE SOLUTION

A natural circulation boiler with generous internal piping and supply lines was to be conceived in order to meet the targets. This led to a stable internal circulation as well as to the maintenance of the required dynamics. A process steam cooler was implemented in the flow-oriented turbine exhaust duct – totally in line with demands of the patented system.

### **SCOPE OF SUPPLY**

- Steam Generator with Valves
- External Process Steam Cooler in the Exhaust Gas Duct
- Ripped- Tube Economiser
- Refractory Lining of Burner Muffles
- Boiler Feedwater System
- Feedwater Tank

#### **ENGINEERING SERVICES**

- Engineering
- Installation and Commissioning
- Trial Run